
IEC 61131-3 Compliant Control Code Generation from Discrete
Event Models

Gašper Mušič, Dejan Gradišar, and Drago Matko

Abstract— This paper describes a control logic implemen-
tation approach, which is based on discrete event models in
form of finite state machines and Petri nets. Such models may
be derived during supervisory control synthesis. The approach
defines a transformation of the models into an IEC 61131-3
compliant code that can be translated and downloaded into
a standard industrial programmable logic controller. This
way, the development and implementation phases of industrial
automation projects are shortened significantly. A well proven
solution libraries may be built by developed and tested models
and reused when necessary.

I. INTRODUCTION

The development of program code for programmable

logic controllers (PLC) is a central design stage in many

industrial automation projects. For a long time, PLCs have

been programmed in a few specialized programming lan-

guages, such as ladder diagram, but with several signifi-

cant specifics, introduced by different PLC vendors. This

hindered the development of general design methods that

would facilitate the design of programs for complex and

demanding industrial applications.

Recently, major PLC manufacturers accepted the inter-

national standard IEC 61131-3 [6] which defines common

elements and syntax of several programming languages.

Although the standard is not strict enough to achieve the

true portability of the code among different PLCs, the

structure of the programs is unified. General computer

supported design methods can be developed, and adapted to

a particular type of PLC by an appropriate code generator.

A PLC may be treated as a discrete event system, which

changes its state (and outputs) in response to changes on its

inputs and time. The process under control, connected to the

controller by means of binary signals only, may be treated

similarly. In the control theory there is a well established

field - the supervisory control therory (SCT) - covering

different aspects of control of the logical discrete event

systems, i.e., systems where the ordering of events is of the

primary concern [1]. Within the SCT the controller action is

interpreted as a mechanism of enabling and disabling events

in the system. The theory enables an algorithmic synthesis

of a supervisor, given a process model and a specification

model [1], [12]. The SCT uses the automata modelling

framework, where an automaton is interpreted as a generator

of a formal language. The synthesis of supervisors by the

use of Petri nets has also been studied, e.g., [5].

G. Mušič, D. Gradišar, and D. Matko are with Faculty of
Electrical Engineering, University of Ljubljana, Tržaška 25, 1000
Ljubljana, Slovenia {gasper.music, dejan.gradisar,
drago.matko}@fe.uni-lj.si

Despite the sound theoretical foundation the application

of the above results to PLC programming is not straight-

forward. The fundamental issue of investigation within the

SCT is the restriction of the system’s behaviour. This is well

suited for designing interlocks that present a significant part

of discrete control logic. For the sequential part, however,

this seems less appropriate although some applications are

reported (e.g. [2], [8]).

Instead of specifying allowed event sequences the desired

operation of controlled system is more naturally described

by a kind of flowchart. For this purpose, the IEC 61131-3

defines a specialised graphical programming language used

for structuring PLC programs. It is similar to Grafcet [3],

which can be interpreted as a special kind of Petri net

[7]. This makes Petri net framework a good candidate for

specifying event sequences in a more compact notation. A

comprehensive survey on the Petri net based methods for

discrete event control design can be found in [11].

Recently, a combined approach has been proposed in [9],

[10]. The SCT is used to synthesize the interlock part of

the control logic. The sequential part is then designed by

Petri nets, which are used in a sense of formal specification.

The specification is verified against the model of admissible

behaviour derived during the interlock synthesis. This paper

focuses on the implementation stage, where the derived

automata and Petri net models are translated into a program

code, that can be downloaded into a standard industrial

PLC. This way, the development and implementation phases

of industrial automation projects are shortened significantly.

II. IEC 61131-3 STANDARD

IEC published the first version of the IEC 61131-3 inter-

national standard in 1993 and the second version in 2003.

The standard defines common elements of programmable

controller programs, including program structure, variable

declarations, etc., and semantic and syntax of four pro-

gramming languages. There are two textual languages,

Instruction List - IL and Structured Text - ST, and two

graphical languages, Ladder Diagram - LD and Function

Block Diagram - FBD.

In addition, the standard defines another graphical pro-

gramming language, Sequential Function chart - SFC. It is

intended for structuring the code, and particularly suited for

applications involving sequences of actions. It is in general

used in conjunction with other programming languages.

The SFC defines the general state transition structure of

the program, while details on transition conditions and step

actions are programmed in other standardized languages.

Proceedings of the 13th
Mediterranean Conference on Control and Automation
Limassol, Cyprus, June 27-29, 2005

0-7803-8936-0/05/$20.00 ©2005 IEEE

MoM04-3

346

III. CONTROL LOGIC SYNTHESIS

As mentioned in Section I the approach described in

this paper is based on a combination of the two standard

paradigms used in the field of discrete event systems:

supervisory control theory, used to synthesize the interlock

logic, and Petri nets, used for specification of the sequential

logic and verification of non-blocking.

A. Multi-stage approach

A multi-stage approach to design of the control logic is

schematically shown in Fig. 1 [8]. The specifications are

split up in two parts. The first part involves prevention

of undesired behaviour. It is composed of the so-called

interlocks that implement measures to assure safety, co-

ordinate subprocesses, etc. The second part of specifications

deals with the sequential behaviour and defines prescribed

order of tasks. The sequencing part of the control logic is

only synthesized after the interlock part has been designed.

B. Interlock part of the control logic

The set of interlock supervisors is designed within the

SCT framework. Beside state machine models of the super-

visors that may be easily implemented in PLC programming

software, the result of the synthesis is also a model of

admissible behaviour, i.e., the model of all possible event

sequences in the controlled system that comply with the in-

terlock specification. One of the key points of the approach

is that this model is used as an open-loop process model

when designing the sequencing part of the control logic.

C. Sequencing part of the control logic

The sequencing controller plays a different role than the

interlock supervisors. Instead of permitting or disabling the

occurrence of events in the system it has to actively trigger

events that result in a state change of the actuating elements

of the process (ΣA in Fig. 1). The design of the sequencing

part of the control logic may also be performed within

the supervisory control theory, e.g. [2], [8], but the design

approach is not as straightforward as with the interlock part.

� � � � � � � � � � � � � � � �	 	 	

 � � � �

� � � � �

 � � � � � �
 � � � �

� � � � � �

 � � � � � �
 � � � �

� � � � � � � �
 � � � � � �
 � � � � � � � �

� �� � � � � � � �� � � � � �

� � � � � � � � � � � �

 � � � � � �
 � � � �

� � � � � � � � � � � �

 � � � � � �
 � � � �

� � � � � � � � � �
� � � � � � � � � �

	 	 	
�� � � � � ��� � � � � �

� � � � � � �
 � � � � � � � �

�� �

� � � � � � � � � � � � � �

Fig. 1. Proposed control structure

An alternative way is to formalize the specification, e.g.

by a Petri net, and to formally verify desired properties.

To make the results of such a verification approach useful

for the control, an adequate model of the process under

control is needed, which is not readily available in many

cases. In our approach we solve this by using a model that

is developed during the interlock stage of the control logic

design. The approach is described in more detail in [9].

An advantage of the Petri net representation is the

straightforward path from the developed specification mod-

els to the industrial implementation. This is due to the

closed relationship between SFC, Grafcet and Petri nets,

which enables a SFC to be directly redrawn from a Petri

net model and some of the classical analysis techniques of

Petri nets can be applied also to SFCs [3].

The synthesis of this part is performed manually through

modelling the sequential specification by the Real-time Petri

nets (RTPN) extension [13] of Petri nets. Once the RTPN

model is obtained, it is algorithmically verified for non-

blocking against the admissible behaviour model obtained

in the interlock design stage.

IV. IMPLEMENTATION

The obtained models of the control logic can be imple-

mented by any of the standardized languages for programm-

able logic controllers [6]. In general, the expressiveness of a

particular programming language is not a problem. Special

care, however, must be devoted to proper structuring of the

code in order for the controller to reflect the functionality of

synthesized models of the control logic. The main proper-

ties required for the implementation include: determinism,

reactiveness, implementation must be deadlock-free.

The problem that has to be solved is how to overcome

an inherent difference in interpretation of inputs in the

SCT framework and the real-time operation of a PLC [4].

Namely, the input data to the PLC program are states of the

corresponding input signals that are scanned in regular time

intervals. The inputs of the formally synthesized supervisors

are events, occurring spontaneously and asynchronously.

The difference may be partially solved by detecting the

state transitions on the input/output (I/O) signals. The delay

between an input event detection and the enabling/disabling

action of the supervisor is not a problem since only the

proper orderings of events are important in the classical

DES theory. The time is not taken into account. The

proper ordering may be easily achieved for the controllable

events (Σc) that are generated by the PLC itself. Other

events, e.g. events related to sensor readings, are considered

uncontrollable (Σu) and are therefore never blocked by the

supervisor, they only need to be observed.

There is, however, another problem. The DES theory

assumes the events occur one at a time. Due to the finite

sampling frequency of PLC inputs there is a common

situation where two or more input signals change state

between the two consecutive input scans. This implies

several events are detected simultaneously. In our approach

347

we solve this by memorizing all simultaneously detected

events and by processing the events one at a time in the

supervisory part of the logic. All events are processed within

a single PLC program scan. The basic requirement is that

the PLC scan rate is high enough to keep the number of

simultaneously detected events as low as possible. More

details are given in the following subsections.

The proposed structure of the program is shown in Fig. 2.

The goal was to maintain the compliance with the IEC

61131-3 on one hand and on the other hand, to put as little

restrictions on the sequencing part as possible. This enables

the testing of different design strategies for the sequencing

part while maintaining security imposed by the interlock

part of the control logic.

A. Event detection and prioritization

The main goal of the event detection and prioritization

part of the control logic (Fig. 2) is to form an event queue

� � � � � � � � � � � 	 �
 �
 � 	

� � � � � � � � � � � � � 	 � �
 � � � � � � 	 � � � �

 � � 	 �

	
 	 � � � � � 	 � 	

� � � � � � � � � � � � � � � � � � � �

	
 	 � � �
� 	 � 	 � � � � � �

	
 	 � �

� � � � 	 � 	 � � � � � � � �
� � � � � 	

� � � 	 �
 � � � � � � �

� � � � � � � 	
 	 � � �
	 � � � � � � � � � � � � �

� � 	 � 	
	 � � � � �

� 	 � � 	 �
 � � � � � � � �

� � � � � � � 	
 	 � � � � 	 � � 	 � � �

� � � � � � � 	
 	 � � �
� 	 � 	
 � � � � � � � � � � � � 	 � � � � �

� � � � � � � � � � � � � �

� � � � � 	 � � � � � � � � 	
 	 � �

� �	
 	 � � � � 	 � 	
 � � � �

� � 	 � 	 � � � � � � � � � �

	
 	 � � �

� � � �

� � 	 � 	

� �� � � � � � � � 	 � � � � 	 � � � 	 � � � 	 � � �

� �

� 	 �

� � � � � � � �
 � � � 	 � � � 	 � � � 	 � � � � � � � ! � " � � � "
� � " � � # � �

� �

	 � � � � � � � � 	 �
 �
 � 	

Fig. 2. Proposed PLC program structure

based on the observation of the I/O signals of the PLC. It is

important to observe outputs as well, what enables to build

the rest of the code modularly, i.e. every supervisory module

changes its state based on the same event observation.

The main problem when designing this part is to de-

termine an appropriate event prioritization scheme. As

mentioned above, the scan rate of the PLC should be

as high as possible and the number of simultaneously

detected events is low. There are also several events that

may not appear simultaneously due to physical setup of

the system. On the other hand, in case of noninteracting

devices the event order of events related to different devices

is irrelevant. Nevertheless, in some cases the event order

may be important. Some further comments on this topic

are given in the following subsection.

This part of the code is written as a combination of ladder

diagram and structured text. LD is used to build a set of

event detection function blocks, a separate block for every

device. The rising and falling edges of the related signals

are detected and memorized. The blocks are then called

from within an event queue function block, written in ST,

where every event is assigned an integer code and an event

queue in a form of integer array is maintained.

B. Implementation of the supervisors

The models derived through the supervisory control syn-

thesis are in the form of finite state machines. Every single

supervisor is implemented in a separate function block.

During the run-time, the blocks are called from within

an event-generation loop. At every iteration of the loop

an event is taken from the queue and the corresponding

state transitions of all supervisors are executed. The loop

terminates when there are no more events in the queue

(Fig. 2). This guarantees that no event is lost.

By this procedure, correct states of the state machines of

the supervisors are reached when events in the queue are

related to independently operating devices. The event order

may be important when some of the events are related. The

formalization of this is beyond the scope of this paper, we

can only give some general remarks here:

(i) A controllable event σ ∈ Σc is detected as a result of

the output change in the previous program scan. Due to the

proposed program structure (Fig. 2) there can not be more

than a single controllable event detected at a time and it can

not be blocked at this point. Therefore we put an eventual

controllable event in the queue first.

(ii) The processing of the uncontrollable events related to

a single device (Σu,d ⊆ Σu) is correct if we can assure

that σi, σj ∈ Σu,d can not appear within the same input

scan. This may seem a serious restriction but is generally

fulfilled in practice. E.g., two events related to the same

signal (rising and falling edge) never appear simultaneously.

Signals related to sensors on the opposite sides of the

moving parts always change one after another and in general

the PLC must be fast enough to perform several program

348

scans in between. So this restriction is more a problem of

a proper system decomposition at the modelling stage.

(iii) The problem remains with the interacting devices. The

implementation is correct when event sequences given by

the defined order of potentially simultaneous events remain

within the admissible behaviour. Defining more precise

and formalized rules to check this is a matter of further

investigation.

The supervisors can be implemented by any standardized

language [6]. In our case, ladder diagram was used. The

basic idea of coding the state machine into a ladder diagram

is shown in Fig. 3. The flag Ev j (event) denotes a rising

(falling) edge on the related I/O signal. A state transition is

then triggered and afterwards, the Enable flag is reset to

assure only a single state transition occurs in one call to the

function block. This way, the avalanche effect [4] is avoided.

The logic could be implemented in a single rung of ladder

but some compilers (including the one we use) produce

warning messages when the same variable is used in the

condition and the action part of the rung. The two rung

implementation is used to avoid compiler messages. The

additional variable Trans is a temporary variable acting

only within a single transition. Therefore it is not necessary

to declare a new variable for every transition, a single

temporary variable may be shared among all transitions.

� � � � �

� � � � �
	 � �
 � �
 � �

 � �

� � � � �

	 � �
 � �

� � � � �

�

�

	 � � � �

 � �

	 � � � �

 � �

 � �

� � � � ��

� � � � �

Fig. 3. Translation of a state transition into a rung of the ladder diagram

The presented idea is easily automated and a correspond-

ing code generator was implemented in Matlab. It takes a

state machine model and builds a text file representation of

a ladder diagram function block compatible with GX IEC

Developer, a PLC programming tool compliant with IEC

61131-3. Such a block can be then directly imported and

used within any GX IEC Developer project.

C. Implementation of the sequencing controller

The sequencing controller is implemented as a separate

function block. The main difference with regard to the

supervisor blocks is the interpretation of the block outputs.

Instead of serving as the enabling signals for the events the

outputs of the sequencing block are used as event triggers.

To facilitate the implementation of the sequencing con-

troller function block, an automatic SFC generator was

implemented in Matlab in a similar way as with the function

blocks of the supervisors. Based on the RTPN specification

model it builds an ASCII representation of a SFC compat-

ible with GX IEC Developer.

D. Additional code

Some additional code is required to obtain an operating

logic controller. The generated function blocks have to be

called with required parameters and a link between the

outputs of the blocks and the controller outputs must be

established.

To reduce the number of connections among function

blocks every supervisor block receives only signals related

to events that participate in the transitions between states

of the related state machine, i.e. events that only appear in

selfloops on the states are not considered. Similarly, only

those events are taken into account on the block outputs that

are disabled at least at one of the states of the supervisor

or triggered by at least one of the steps of the sequencing

controller. Obviously, the outputs of any block may only be

related to controllable events.

The outputs of the sequencing controllers are linked by

the outputs of the supervisors by a logical conjunction.

Conditions for setting or resetting the controller outputs are

obtained this way. At this point time delays can be inserted

when necessary.

V. EXAMPLE

As an example we show some parts of the code for

the control of a modular production line. The problem

and the solution are described in more detail in [10]. We

focus on the distribution station, consisting of a distribution

piston, that takes a workpiece from the input buffer, and a

manipulator that transports the workpiece further.

The station is decomposed into three devices, besides the

distribution piston, there are also the arm of the manipulator

and a gripping device mounted on the arm.

To illustrate the supervisory part of the control logic, we

consider the implementation of the supervisor maintaining

part of the interlock between the arm and the gripper

(Fig. 4). The effect of the supervisor is to prevent start of

the arm movement when the vacuum grip is being switched

on or off. The control of the grip is performed by a bi-stable

electro-pneumatic valve, so there are two control signals -

ag1 to switch the grip on and ag0 to switch the grip off.

� � � �

� � � � � � � � � � � � �
	 	 	 	 �
 � � � � � �

� �

� � � � � � � � �

Fig. 4. An example of the interlock supervisor

AG00
AG01
AG10
AG11

ENABLE
RESET
AG00
AG01
AG10
AG11

E_AR1

Sup_3

InterlockSup3

TRUEFIRST_SCAN

MAN_RST

E_AL1LE_AL1

LE_AR1 E_AR1

Fig. 5. Function block call of the supervisor

349

The supervisor is implemented as a function block

(Fig. 5). Inputs to the block are ENABLE and RESET
signals, which control the internal state transition logic, and

signals AG00, AG01, AG10, and AG11 denoting possible

state transitions of control signals ag0 and ag1. Related

variables are the outputs of the event generation logic.

The outputs of the block are signals E AL1 and E AR1,

which serve as enable signals for the controller outputs

driving the arm left and right, respectively. Note that in

Fig. 5 the variables E AL1 and E AR1 are set according to

the result of logical conjunctions of the block outputs with

variables LE AL1 and LE AR1. These are the outputs of

another, so called arm local supervisor.

The internal logic of the supervisor block is shown in

Fig. 6. After the initial two rungs maintaining ENABLE
and RESET signals, there starts the state transition section

as described previously. In the output section, the movement

of the arm is blocked, when the supervisor is in state S 1.

Sup_3 [FB] Body [LD]Sup_3 [FB] Body [LD] Network#1

Network #1 (1) Label:

ENABLE ENABLE_FLAG

Sup_3 [FB] Body [LD] Network#2

Network #2 (1) Label:

Reset section

RESET

ENABLE_FLAG

R

S_1

R

S_0

S

Sup_3 [FB] Body [LD] Network#3

Network #3 (1) Label:

State transition section

ENABLE_FLAG S_0 TRAN_FLAGAG01

AG11

Sup_3 [FB] Body [LD] Network#4

Network #4 (1) Label:

TRAN_FLAG S_1

S
S_0

R
ENABLE_FLAG

R

Sup_3 [FB] Body [LD] Network#5

Network #5 (1) Label:

ENABLE_FLAG S_1 AG00

AG10

TRAN_FLAG

Sup_3 [FB] Body [LD] Network#6

Network #6 (1) Label:

S_0

S
S_1

R
ENABLE_FLAG

R

TRAN_FLAG

Sup_3 [FB] Body [LD] Network#7

Network #7 (1) Label:

Output section

E_AL1

/
E_AR1

/

S_1

Fig. 6. Ladder diagram implementation of the supervisor

All the supervisors are implemented in a similar manner,

their outputs are conjuncted, and a set of enable flags is

derived this way. Finally, these flags are used in conjunction

to the outputs of the sequencing controller block. This block

is implemented as a Sequential function chart, based on

the Petri net specification. An example of such a Petri net

specification is shown in Fig. 7 and Tables 1 and 2.

After receiving a start signal and moving the arm to

the initial position (left - to clear the working area of the

neighbouring station), the controller checks another start

signal and the presence of a workpiece to start the cyclic

operation. A normal working cycle is concluded when the

workpiece is carried right to the next working station and

the gripper is released. Alternative paths are provided for

cases when there is no workpiece but the arm has to be

moved to clear the workspace and for the cases when the

requested operation does not terminate in the prescribed

time. In the later case an error state is entered, which can

only be left after acknowledgement of the error.

With the resulting RTPN a code generator is started

and the SFC built for the given case is shown in

Fig. 8. There can be seen a strict correspondence between

places/transitions of the RTPN and steps/transitions of the

SFC. This is only possible when the RTPN is a safe and or-

dinary (all arc weights are 1) Petri net. We therefore require

the Petri net specification of a sequencing controller must

have these properties. The conflicts present in the RTPN

also appear in the SFC. It is a matter of implementation

platform how these conflicts are resolved in run-time, e.g.

p
1

t
1

p
2

initial state

to initial
position

p
3

p
4

p
5

t
2

p
6

start
error t

3

t
4

acknowledge

timeout

t
5

t
6

push

t
7

forward

move
right

t
8

p
8

move left

left pos.

p
7

t
9

left and

workp.
ready.

t
10

hold

t 11

p
9

move
right

p
10

t
12

right

release grip

t
13

timeout
and new
workp.
ready

is held

t
14

timeout
and new workp.
not ready

left and

workp. not
ready

right and

workp.

ready
right and

workp. not
ready

t 15

t
16

t
17

t
19

timeout

and not right

t
18

cycle and

workp.

ready

timeout

timeout

timeout

timeout

Fig. 7. RTPN sequential specification

350

TABLE I

RTPN TRANSITION CONDITIONS

Y (t1)=start legend:
Y (t2)=sl ack - error acknowledgement
Y (t3)=d4s cycle - start of the cycle
Y (t4)=ack d05s - 0.5s timeout expired
Y (t5)=cycle (similarly: dns - ns timeout)
Y (t6)=sl AND NOT si sf/b - front/back pos. sensor
Y (t7)=sr AND si sg - workpiece is held
Y (t8)=sf si - workpiece present
Y (t9)=sl AND si sl - left position sensor
Y (t10)=sr AND NOT si sr - right pos. sensor
Y (t11)=sg start - start of operation
Y (t12)=sr OR d6s OR NOT sg
Y (t13)=d05s AND si AND cycle
Y (t14)=d05s AND (NOT si OR NOT cycle)
Y (t15)=d6s
Y (t16)=d1s
Y (t17)=d4s
Y (t18)=d2s
Y (t19)=d05s AND NOT sr

TABLE II

RTPN PLACE ACTIONS

Z(p1)={(l start, 1),(l error, 0)}
Z(p2)={(l start, 0),(al, 1)}
Z(p3)={(al, 0)}
Z(p4)={(l error, 1),(al, 0),(ar, 0),(af, 0),(ag0, 0)}
Z(p5)={(ar, 1),(ag0, 0)} af - piston forward
Z(p6)={(ar, 0),(af, 1)} ag0 - release the grip
Z(p7)={(al, 1),(ar, 0),(ag0, 0),(af, 0)} ag1 - activate the gripper
Z(p8)={(al, 0),(ag1, 1)} al/ar - arm to the left/right
Z(p9)={(ar, 1),(ag1, 0)} l error - error indicator
Z(p10)={(ar, 0),(ag1, 0),(ag0, 1)} l start - initial st. indicator

in our case the priority is given to the leftmost transition.

VI. CONCLUSIONS

The presented approach enables a relatively high automa-

tion of the control synthesis for the manufacturing systems.

Once the model of the plant and the specification models

are developed an appropriate computer tool may perform

all the necessary calculations and even generate most of

the control code. A set of functions was developed in

Matlab to perform the supervisory control synthesis, RTPN

verification and automatic code generation in a form of IEC

61131-3 compliant function blocks. Only a small amount

of additional programming is then needed to obtain an

operating logic controller.

REFERENCES

[1] C.G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems, Kluwer Academic Publishers, Dordrecht, 1999.

[2] V. Chandra, S.R. Mohanty and R. Kumar, ”Automated control
synthesis for an assembly line using discrete event system control
theory”, in Proceedings of the American Control Conference, Ar-
lington VA, 2001, pp. 4956–4961.

[3] R. David, Grafcet: A Powerful Tool for Specification of Logic
Controllers, IEEE Trans. on Control Systems Technology, vol. 3, no.
3, 1995, pp. 253–268.

[4] M. Fabian and A. Hellgren, ”PLC-based Implementation of Supervi-
sory Control for Discrete Event Systems”, in Proceedings of CDC’98,
Tampa, Florida, USA, 1998, pp. 3305–3310.

[5] L.E. Holloway, B.H. Krogh, A. Giua, A Survey of Petri Net Methods
for Controlled Discrete Event Systems, Discrete Event Dynamics
Systems: Theory and Applications, vol. 7, 1997, pp. 151–190.

MPS1_Seq [PRG] Body [SFC]MPS1_Seq [PRG] Body [SFC]

p_4_1

=[CYCLE
AND SI]

=[ACK]

p_1_1

SI] NOT SI]

p_4_1

=[SF]

p_4_1

=[SL AND
SI]

=[SL AND
NOT SI]

p_4_1 p_3_1

=[SR OR
D6s OR NOT SG]

=[D05s A
ND (NOT SI...]

=[D05s A
ND SI AND ...]

=[D05s A
ND NOT SR]

p_5_1 p_4_1

9

0

Fig. 8. Automatically generated SFC

[6] IEC, Programmable Controllers - Part 3: Programming Languages.
International Electrotechnical Commission, publication 61131.3.
Geneva, 1993.

[7] T. Murata, Petri nets: Properties, analysis and applications. Proc.
IEEE, vol. 77, 1989, pp. 541–580.

[8] G. Mušič, B. Zupančič and D. Matko, ”Model based programmable
control logic design”, in Preprints of the 15th Triennial IFAC World
Congress. Barcelona, Spain, 2002.

[9] G. Mušič and D. Matko, ”Petri net control of systems under discrete-
event supervision”, in ECC’03 European Control Conference. Cam-
bridge, UK, 2003.

[10] G. Mušič and D. Matko, ”Combined synthesis/verification approach
to programmable logic control of a production line”, in IFAC World
Congress 2005, to appear.

[11] S.S. Peng and M.C. Zhou, Ladder Diagram and Petri-Net-Based
Discrete-Event Control Design Methods, IEEE Trans. on Systems,
Man, and Cybernetics - Part C, vol. 34, 2004, pp. 523–531.

[12] W.M. Wonham, Notes on Control of Discrete Event Systems: ECE
1636F/1637S 2003-2004. Systems Control Group, Dept. of ECE,
University of Toronto, 2003.

[13] M. Zhou and E. Twiss, Design of industrial automated systems
via relay ladder logic programming and petri nets, IEEE Trans. on
Systems, Man, and Cybernetics - Part C, vol. 28, 1998, pp. 137–150.

351

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ArialNarrow-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Oblique
 /Times-Roman
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

